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We present a theoretical study on the spin-dependent transport through a spin valve consisting of graphene
sandwiched between two magnetic leads with an arbitrary orientation of the lead magnetization. No gate
voltage is applied. Using Keldysh’s nonequilibrium Green’s function method we show that, in absence of
external magnetic fields, the current-voltage curves are nonlinear. Around zero bias the differential conductance
versus bias voltage possesses a strong dip. The zero-bias anomaly in the tunnel magnetoresistance �TMR� is
affected strongly by the leads’ spin polarization. Depending on the value of the bias-voltage TMR exhibits a
behavior ranging from an insulating to a metallic type. In presence of a static external magnetic field the
differential conductance and TMR as a function of the bias voltage and the strength of the magnetic field show
periodic oscillations due to Landau-level crossings. We also inspect the effects of the temperature and the
polarization degrees on the differential conductance and TMR.
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I. INTRODUCTION

Recent advances in nanoscience techniques opened the
way for the creation and the investigation of the two-
dimensional carbon, also called graphene.1–4 This system is a
monolayer of carbon atoms packed densely into a honey-
comb lattice, and can be viewed as the basic building block
for many carbon-based materials with other dimensionalities,
including fullerene, nanotube, graphite, etc. Its low energy
band structure consists of two inequivalent pairs of cones
with apices located at the Brillouin-zone corners.5 In these
cones, the energy-dispersion relation is linear, and the dy-
namics of the charge carriers is governed by a massless
Dirac-type equation. The form of the electronic band struc-
ture is expected to lead to a number of unusual electronic
properties in graphene such as the anomalous quantized Hall
effect, the absence of the weak localization, and the exis-
tence of the minimal conductivity.6 Graphene is also an in-
teresting candidate for transport applications, in particular
for spintronics: the mobility is remarkably high and the car-
rier density is controllable by a gate voltage. In addition,
spin-dependent interactions can be exploited for the control
of the magnetoconductance.7–12 Motivated by these facts, the
spin-dependent properties of graphene are in the focus of
current research; e.g., Hill et al.13 fabricated graphene spin-
valve device and observed a 10% change in the resistance as
the electrodes switch from a parallel to an antiparallel state.
Recent experiments on spin injection in a single layer
graphene show a rather long spin-flip length ��1 �m� at
room temperature.14 Spin injection into a graphene thin film
has been successfully demonstrated by using nonlocal mag-
netoresistance measurements.14–16 Wang et al.17 measured
the magnetoresistance of mesoscopic graphite spin-valve de-
vices and observed a cusplike feature of the magnetoresis-
tance versus the applied bias and pointed out the importance
of spin-dependent interfacial resistance for spin injection.

In this work we investigate theoretically the spin-
dependent transport through a graphene spin-valve device

with ferromagnetic leads having arbitrary spin-polarization
directions. No gate voltage is applied. Utilizing Keldysh’s
nonequilibrium Green’s function method18 we calculate the
density of states �DOS� and the electrical current in the
ferromagnet-graphene-ferromagnet �FM-G-FM� coupled sys-
tem. The differential conductance and the tunnel magnetore-
sistance are also calculated without and with a static external
magnetic field at finite temperatures. We found that at zero
magnetic fields, the current-voltage curves in this spintronic
structure show a nonlinear characteristic; the differential
conductance as a function of the applied voltage exhibits a
strong dip near zero bias. The behavior of the zero-bias
anomaly in TMR is governed by the leads’ spin polarization.
With increasing the temperature, the dip in the differential
conductance and the cusp in TMR near zero bias diminish.
When both the spin-polarization degrees and the relative
angles of the two ferromagnetic moments are large, the dif-
ferential conductance is small due to the influence of both
the DOS in graphene and the conventional spin-valve effect.
In the presence of a static magnetic field, the differential
conductance and TMR show periodic oscillations due to a
resonant transport though the Landau levels when the bias-
voltage values are appropriate. At zero-bias voltage, the dif-
ferential conductance versus the temperature shows a behav-
ior different from the field-free case. We attribute this fact to
the breaking of the insulator-type properties of graphene at
finite magnetic fields.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and derive the current formula in the
absence of the magnetic field. In Sec. III, the magnetotrans-
port properties of this system are computed at finite external
magnetic fields. In Sec. IV, the corresponding numerical re-
sults are given. Finally, a summary is presented.

II. THEORETICAL MODEL

We consider a spin-valve device consisting of a graphene
layer contacted to ferromagnetic electrodes, as shown in Fig.
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1. The moment ML of the left electrode is assumed to define
the z direction, while the moment MR of the right electrode
deviates from the z direction by a relative angle �. A bias
voltage V is applied between the left and the right electrodes.
The electrical current flows in the x direction. The left and
the right electrodes can be described by Hamiltonians,

HL = �
k,�

�kL�ckL�
† ckL�, �1�

HR = �
k,�

��R�k� − �MR cos ��ckR�
† ckR� − MR sin �ckR�

† ckR�̄,

�2�

where �k�� is the single electron energy associated with the
momentum k, the spin � and the � electrode. ck��

† �ck���
creates �annihilates� an electron with the energy �k��.

The tight-binding Hamiltonian of the electrons in
graphene is given by

HG = − t �
�i,j�,�

�ai,�
† bj,� + H.c.� , �3�

where ai,�
† �ai,�� creates �annihilates� an electron with the spin

� on the position Ri of the sublattice A, bi,�
† �bi,�� creates

�annihilates� an electron with the spin � on the position Ri
on the sublattice B, and t is the nearest-neighbor ��i , j�� hop-
ping energy. In the momentum space the Hamiltonian HG is
rewritten as

HG = �
q,�

���q�aq�
† bq� + ��q��bq�

† aq�� , �4�

where

��q� = − t�
i=1

3

eiq·�i with �1 =
a

2
�1,	3,0�,

�2 =
a

2
�1,− 	3,0�, �3 = a�1,0,0� .

Here a is the lattice spacing. Diagonalizing Hamiltonian �4�
one finds

E	�k� = 	 t
��k�
 ,

which can be linearized around the K points of the Brillouin
zone leading to the dispersion

E	�k� = 	 vF
k
 , �5�

where vF=3ta /2 is the Fermi velocity of electron �t
�2.3 eV �Ref. 19��. The coupling between the electrodes
and graphene is modeled by

HT =
1

	N
�

kq��

�Tk�qck��
† aq� + H.c.�, � = L,R . �6�

Tk�q is the coupling matrix between the � electrode and the
graphene; N is the number of sites on the sublattice A.

The electrical current from the left electrode to the
graphene sheet is obtained from the time evolution of the
occupation number operator of the left electrode, i.e.,

I = e�Ṅ̂L� =
ie



��H,N̂L��, N̂L = �

k�

ckL�
† ckL�. �7�

Using the nonequilibrium Green’s function method, Eq. �7�
can be further expressed as

I = −
ie


N
� d�

2�
Tr�

qq�

�Gqa,q�a
r ��� − Gqa,q�a

a ����fL���

+ Gqa,q�a
� ����Lq�q��� , �8�

where Tr means the trace in the spin space and f���� is the
Fermi distribution function at the energy �.

Gqa,q�a
���,��t − t�� = i�aq���

† �t��aq��t��

is the matrix expression for the lesser Green’s function.
Gqa,q�a

r ��� and Gqa,q�a
a ��� are 2�2 matrices in the spin space

in the sublattice A describing, respectively, the retarded and
the advanced Green’s function. The linewidth matrix �qq� is
given by

�qq���� = ��qq�
↑

0

0 �qq�
↓ � , �9�

and �qq�
� ��� = 2��

k
Tk�q

� Tk�q���� − �k��� ,

where TkLq stands for the coupling of graphene to the elec-
trodes. To evaluate I from Eq. �8� the retarded Green’s func-
tion Gqa,q�a

r ��� needs to be calculated. Here we consider elec-
trons near the Fermi level which contribute predominantly to
tunneling. In this case one may assume the coupling matrix
TkLq to be independent of q and set �qq�

� =�
�. Standard

Green’s function technique18 delivers,

Gqa,q�a
r ��� = �qq�gqa,qa

r ��� + gqa,qa
r ���T���gq�a,q�a

r ��� .

�10�

In the above expressions we introduced

M Mz

x

FIG. 1. Schematic illustration of the system considered in this
work. The graphene is connected to two magnetic leads by the
tunneling barriers. The moments of the leads are aligned by a rela-
tive angle �, and the coupling matrix between � ��=L ,R� electrode
and graphene is Tk�.
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gqa,qa
r,a ��� =

�

�� 	 i��2 − 
��q�
2
,

and T��� =
�r���

1 − ḡaa
r ����r���

,

where

ḡaa
r,a��� =

1

N
�
q

gqa,qa
r,a ��� ,

and �r,a��� = �
i

2
�L��� + RR���R†�

with

R = �cos�
2 − sin�

2

sin�
2 cos�

2

� .

In Eq. �8�, Gqa,q�a
� ��� can be derived by applying Keldysh

equation

Gqa,q�a
� ��� = Gqa,q�a

r ��������Gqa,q�a
a ���

with

����� = i�fL���L��� + fR���RR���R†� .

Substituting the expressions of the graphene Green’s func-
tions in Eq. �8�, and after a straightforward calculation we
obtain the tunneling current as

I = e

� d�

2�Tr�Ga
r����RR���R†��Ga

a���L�����fR��� − fL���� ,

�11�

where

Ga
r,a��� = �

q�
�

q

Gqa,q�a
r,a ��� =

ḡaa
r,a���

1 − ḡaa
r,a����r,a���

. �12�

Introducing a cutoff kc leads to

ḡaa
r,a��� = − F0��� � i��0��� , �13�

where

F0��� =
�

D2 ln

�2 − D2


�2 , �0��� =

�

D2��D − 
�
� . �14�

D=vFkc stands for a high-energy cutoff of the graphene
bandwidth. Invoking the Debye’s prescription, we choose kc
such that the total number of states in the Brillouin zone is
conserved after the linearization of the spectrum around the
K point. Hence, Eq. �13� is accurate for ��D, i.e., � has to
be in the region where the linearization of the spectrum is
justifiable which is roughly estimated20 to be �−1.6 eV, 1.6
eV�. In Eq. �12� we assumed a symmetrical voltage drop as
�L,R=EF	

1
2 eV, and put EF=0 in the numerical calcula-

tions. The TMR at the angle � is conventionally defined as

TMR��� =
I�0� − I���

I�0�
. �15�

III. MAGNETOTRANSPORT AT FINITE EXTERNAL
MAGNETIC FIELDS

In the presence of a static external magnetic field, the
description of the transport properties of electrons in a hon-
eycomb lattice becomes much more involved due to the cou-
pling between graphene and the electrodes associated with
the Hofstadter problem. To circumvent this situation we de-
scribe the electrons in the honeycomb lattice as Dirac fermi-
ons in the continuum. At first we introduce the field
operators21,22

���r� = �
q

eiqx

	L
� 0

�0�y� �dq�

+ �
q,n,�

eiqx

	2L
� �n�y − qlB

2�
�n+1�y − qlB

2�
�dqn��, �16�

where lB=1 /	eB is the cyclotron length, n=0,1 ,2 , . . ., �
= 	1, and �n�x� is the nth eigenfunction of the usual one-
dimensional harmonic oscillator. The Hamiltonian describing
the electrons in graphene acquires the second-quantized form

HG = �
qn��

E�n,��dqn��
† dqn��, �17�

where

E�n,�� = ��c
	n + 1

is the Landau level with �c=vF
	2eB. The sum over integer

n’s is cut off at N. The coupling between graphene and fer-
romagnetic electrodes is

HT = �
kq�

�0�− qlB
2��TkLqckL�

† dq� + TkLq
� dq�

† ckL�� + �
kqn��

��n�− qlB
2� + ��n+1�− qlB

2���TkLqckL�
† dqn�� + TkLq

� dqn��
† ckL��

+ �
kq�

�0�L − qlB
2��TkRqckR�

† dq� + TkRq
� dq�

† ckR�� + �
kqn��

��n�L − qlB
2� + ��n+1�L − qlB

2���TkRqckR�
† dqn�� + TkRq

� dqn��
† ckR�� ,

�18�
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where L is length of graphene. Similar to the calculation of
Eq. �11� we obtain the electrical current in the form

JL =
e



� d�

2�
Tr�� − �1 + �X��r�−1�1 + �X�2RRR†

��� − �1 + �X��a�−1L��fR��� − fL���� , �19�

where

X��� = �
n�

1

� − E�n,��
=

2�

�c
2����c

2 − �2

�c
2 �

− �� �N + 2��c
2 − �2

�c
2 �� ,

with ��z� denoting the digamma function.23 The electric
conductance can be obtained by �JL /�V. For a small bias
voltage we obtain the Landauer-Büttiker-type expression

G =
e2

h
Teff, �20�

where

Teff = TrEF − �1 + EFX�EF���r�−1�1 + EFX�EF��2RRR†

�EF − �1 + EFX�EF���a�−1L�

plays the role of an effective energy-dependent transmission
coefficient. In the limit B→0, we further obtain for �=0,

Teff = �
�

�L
�R

�

EF
2 +

1

4
��L

� + R
��2

, �21�

where �= �2N+3�2+2�N+1��N+2��2N+3�
�c

2

EF
2 .

IV. NUMERICAL RESULTS AND DISCUSSIONS

Adopting the wide bandwidth approximation for the
graphene spin-valve system we neglect the energy depen-
dence of the linewidth functions �

����. Denoting the spin
polarization of the left and the right electrodes by, respec-
tively, pL and pR we write L

↑,↓=R
↑,↓=0�1	 p�; here 0 de-

scribes the coupling between the graphene and the electrode
without the internal magnetization. Here we assumed the left
and the right electrodes to be of the same material. In the
following numerical calculation, we take 0 as the energy
scale. We calculate the DOS in graphene via relation ����
=− 1

� Im��Ga
��,r���. Figure 2 shows the DOS as a function of

energy for different polarization p and magnetization angle
�. It is clearly observed that the DOS displays a dip structure
with the energy. For nonzero energy, the DOS increases with
increasing p, however it decreases with increasing �. This is
caused by the different tunneling rates for up and down spins
owing to the splitting of DOS of the ferromagnetic leads.
This splitting acts as an effective magnetic field24 reaching
values much larger than externally applied magnetic field.25

This results in a spin dependence of the DOS in the central

FIG. 2. DOS as a function of energy � for different polarization
p at �a� �=0 and for different angle � at �b� p=0.6. The other
parameters are taken as D=20 and B=0.

FIG. 3. The bias dependence of the electrical current I �a� and
differential conductance G �b� for different polarization p at �=0
and kBT=0.0050. The other parameters are taken the same as those
of Fig. 2.
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region. While at the zero energy point, the DOS is indepen-
dent of p and �. This stems from the nature of Dirac point in
the graphene.

The bias dependence of the electrical current and the dif-
ferential conductance G=dI /dV are shown in Fig. 3 for par-
allel electrodes magnetizations and for the different polariza-
tion p. The nonlinear behavior of G and the strong dip at
zero bias are in line with the experimental observations,17

and are at variance with the typical behavior when a Fermi
liquid is in central region instead of graphene. In that case
the electrical current is proportional to the applied voltage at
small bias and obeys the Ohmic law.26 The results obtained
here resemble rather the ferromagnet-insulator-ferromagnet
�FM-I-FM� junctions.27,28 The reason is that the DOS in
graphene diminishes at the Fermi level. Hence, graphene
sheet can be viewed as a tunneling barrier at the zero energy
point, similar to FM-I-FM system. With increasing the polar-
ization p, the portion of spin-up electron states increases
while for the spin-down electrons it decreases. However, the
scattering of the former is larger than that of the latter, thus
we conclude that the conductance G decreases with increas-
ing p at nonzero bias �cf. Fig. 3�b��. While G is almost in-
dependent of p at zero bias, which stems from the fact that
the spin transport through the Dirac point of graphene is
ballistic due to its insulatorlike properties.

The bias dependence of the conductance at different tem-
peratures T and angles � are shown in Fig. 4: the conduc-
tance is roughly independent of T at large bias. Near V=0 the

conductance increases with increasing T. This behavior is
also in contrast to usual Fermi liquids where the conductance
decreases with increasing temperature because thermal fluc-
tuations enhance the scattering of conduction electrons and
thereby contributes to the resistance of system.26 In our case,
the graphene is equivalent to a barrier at the zero energy
point. Near zero-bias voltage, the thermally excited electrons
are dominant in tunneling process. Therefore, with increas-
ing temperatures, the increase in the thermally excited elec-
trons enhances the conductance. On the other hand for large
bias, the contributions to the conductance stem mainly from
electrons with excess energies well above the Fermi level �as
dictated by the applied voltage� which leads to a very weak
dependence of the conductance on the temperature at large
bias. The conductance as a function of � �Fig. 4�b�� follows
the conventional behavior of magnetic junctions such as the
ferromagnet-quantum dot-ferromagnet system.29–31 When �
changes from 0 to � the number of spin-up and spin-down
electrons is rearranged. Figure 5 shows TMR ratio as a func-
tion of the applied voltage for different polarizations p and
temperatures T. A pronounced cusplike feature appears at
zero bias in line with experimental observations.17 We assign
this behavior to the result of a nontrivial combined effect of
graphene and conventional spin-valve properties, evidenced
by the dependence of TMR on the polarization p at a fixed
bias voltage �cf. Fig. 5�a��. When increasing the polarization
p the contribution of spin-up states relative to the spin down
is increased resulting in an increase in TMR for the entire
bias range. However, the TMR changes in a nonlinear man-
ner: the TMR value at zero bias becomes larger than that at
nonzero bias. This is because for a small bias graphene be-

FIG. 4. The bias dependence of the differential conductance G
for different temperature T at �a� �=0 and for different angle � at
�b� kBT=0.0050. The parameters are taken the same as those of
Fig. 2.

FIG. 5. The bias dependence of TMR for different polarization p
at �a� kBT=0.0050 and for different temperature T at �b� p=0.6.
The other parameters are taken the same as those of Fig. 2.
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haves as an insulator. In contrast, for a large bias graphene
behaves more like a metal, which is an essential difference
between graphene and other materials in the central region.
The spin tunneling is ballistic through an insulator in contrast
to a metal, whence the TMR is more enhanced around zero
bias. There are almost no changes with the temperature T for
large bias �see Fig. 5�b��. With increasing temperatures more
thermally excited electrons contribute to the electrical cur-
rents for the parallel and the antiparallel configurations; in
fact, the increase in the electrical current is faster for the
antiparallel configuration. Therefore, we can conclude that
the TMR decreases at higher temperatures and the zero-bias
anomaly diminishes in this situation.

The bias and the magnetic field dependencies of the dif-
ferential conductance G for the different temperatures in the
parallel configuration of magnetization are shown in Fig. 6.
G versus the applied voltage exhibits an oscillating behavior.
Each conductance peak corresponds to resonant transport
through a Landau level. As bias voltage increases, the dis-
tance between two neighboring peaks decreases due to the
decrease in the distance between neighboring Landau levels.
The differential conductance oscillates as a function of the
magnetic field, as shown in Fig. 6�b�. This is due to resonant
transport through the Landau levels at a particular magnetic
field strength and the applied bias values. With increasing
temperatures �Fig. 6�a�� the differential conductance de-

ceases for all bias voltages. In particular, at zero bias the
temperature dependence of the differential conductance is
different from the magnetic field-free case. The explanation
for these phenomena is as follows: the magnetic field lifts the
insulator behavior at Dirac point in graphene, and thus ther-
mal fluctuations suppress the conductance. Figure 7 shows
the TMR as a function of the bias voltage and the magnetic
field strength for different polarizations p. TMR reaches a
minimal value at bias voltages corresponding to the conduc-
tance peaks and increases with increasing p which is nothing
but a spin-valve effect.

V. SUMMARY

In conclusion, we have studied the spin-dependent trans-
port through a graphene spin-valve device for a noncollinear
configuration by means of Keldysh’s nonequilibrium Green’s
function method. It is found that at a zero magnetic field, the
current-voltage curves show a nonlinear behavior. The cor-
responding differential conductance exhibits a strong dip
near zero bias. The TMR shows a zero-bias anomaly that
depends on the leads’ spin polarization. Increasing the bias
TMR follows a behavior akin to a metallic or an insulating
system depending on the value of the bias. In the presence of
an external magnetic field, the differential conductance and
TMR oscillate periodically due to a resonant transport

FIG. 6. The differential conductance as a function of the bias
voltage at �a� �BB=10 and of the magnetic field at �b� eV
=3000 for different temperature T in the parallel configuration.
The parameters are taken as p=0.6 and N=100.

FIG. 7. The TMR as a function of the bias voltage at �BB
=10 �a� and of the magnetic field at eV=3000 �b� for different
polarization p at kBT=0.10. The other parameters are taken the
same as those of Fig. 6.
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through Landau levels. At zero bias the differential conduc-
tance versus the temperature reveals a behavior different
from the magnetic field-free case.
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